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Introduction to Detailed Design 

In previous documentation, design considerations for the routes followed within this project were presented. This document aims to expand the design exploration to a greater level of detail.  The Detailed Design document is structured into the following areas:

Output testing:

This chapter aims to present the testing method used to verify that the output given from the integration of PGP and LAME is identical to the output from each of the two components separately. In brief, the same audio file used in LAME should generate the exact same MP3 file from the integrated version. The same concept applied to the encryption and the decryption used with PGP.

Application Integration:

This section is divided into three parts; the first part outlines in detail the modifications made to the PGP source code for I/O call removals; the second part applies the same operations used on LAME for I/O call removals; the third section details the integration plan used to arrive at the final integrated software only prototype. In addition, the same section outlines the strategy for source code profiling.

Fixed-Point Migration:

Fixed Point Migration is considered one of the major development phases of the project.  This section aims to identify fixed-point considerations and the implementation method carried out. Fixed-point porting is a crucial step in the project as hardware migration is not possible whilst floating-point variables exist within the source code.

Static Analysis:

This section comprises two parts, each detailing the main algorithms used by the original developers of LAME and PGP. The two parts aim to provide an understanding of the complexity of the algorithms used so that potential explanations of the profiling data may be identified. Moreover, the static analysis may enable modifications to be applied to the source code that could possibly optimise the operation of the two routes.

Profiling:

This section presents the findings of the profiling carried on the two components using a number of distinct audio samples. Four different genres of music were used, specifically, Classical, Jazz, Pop and Rock. The results obtained from the profiling identified possible candidates for hardware implementation or optimisation.

ASIP design Route:

This section presents the design considerations applied to the ASIP route, beginning with an explanation of the processor model developed, which to date has been implemented to support a subset of the MIPS instruction set. Subsequently, the system architecture of the processor and communication with the host program is detailed. A small section details the use of the Gnu Compiler Collection, which is the compiler selected for the development of the ASIP implementation of the application.

Hardware/Software Partitioning Route:

This chapter details the rules used to provide candidates for the re-targetable hardware and explains their functionality.  A section is then provided describing how such candidates will be migrated to the re-targetable hardware together with the optimisation considerations and communication protocol details.

Custom Hardware Design:

This chapter details the design of the custom hardware that will playback the MP3 file to the speakers. (PLEASE ADD TO THIS)
We conclude this documentation with a conclusion that entails the current state of the project and were it will progress to. (NOT DONE YET)

EDITING PENDING:

I’m finishing off the risks we discussed the other day, so I’ll send it soon. I’ll need an hour at least :).

Check Jimmy’s Part.

I’m not too sure if we needed paragraphs at the end of each chapter to link to the next one. I think the introduction does the job.

Skim through the document, just in case I missed things. And I’m sure I have!!!

Call graphs.

Project Plan needs to be printed with the document.

Page numbering might need some tweaking.

Testing

1 Output Testing
This document describes the tests carried out and the actual results obtained when testing two different PGP versions. One is the original PGP and the other is PGP with all the I/O system calls removed. The purpose of this module testing is to make sure that the final PGP version (one with all the I/O system calls removed) work correctly.

1.1 Test Data

The data to be used for this module testing would be any music files in MP3 format.

1.1.1 Test Procedures

Testing PGP includes two main stages, first stage tests the encryption process and seconds stage involves testing the decryption process. In these stages, the data (MP3 file) will be encrypted or decrypted using three different key strengths;

1. 512 bits: Low commercial grade, fast but less secure.

2. 768 bits: High commercial grade, medium speed and good security.

3. 1024 bits: Military grade, slow but offers highest security.

After having encrypted or decrypted the data, a utility in CYGWIN (or some files comparison utility in DOS) is used to detect any difference between the data encrypted/ decrypted by the original PGP and the modified PGP (one with I/O system calls removed).

1.2 Test Implementation

Several MP3 music files with different genre were used as the test data, for instance, one of the files was called Skin O’ My Teeth, by Megadeth. The genre was heavy metal and the file had a size of 32.6Mb. This file was encrypted using original PGP with 512 bits RSA key strength, the encrypted file was then decrypted using the same PGP code. After having completed this process, the same test data was encrypted and decrypted again but this time, using the modified PGP. As mentioned in the previous section, a comparison utility was used to detect any differences. 

The above operation was carried out repetitively with different MP3 files and also with different RSA key strengths as mentioned above.    

1.3 Test Results

After having carried the procedures as mentioned above, we have found that the encrypted/ decrypted data produced by both versions are identical, the test has proven that the original PGP and the modified PGP versions are robust and producing the same results. This concludes that the version, which will be used in the DEEP-3 system is functioned correctly.

1.3.1 Implementation for LAME With & Without I/O System Calls

The testing procedure for this module is exactly the same as for PGP, however, there are more options and configurations in LAME to test and they are all listed in the table below:

	Configuration Type

	Constant Bit Rate (Default)

	Constant Bit Rate (Low quality)

	Constant Bit Rate (High Quality)

	Average Bit Rate (Low Quality)

	Average Bit Rate (Medium Quality)

	Average Bit Rate (High Quality)

	Variable Bit Rate (Low Quality)

	Variable Bit Rate (Medium Quality)

	Variable Bit Rate (High Quality)

	Variable Bit Rate (Minimum Bit Rate and Maximum Bit Rate specified)

	Constant Bit Rate Pre-set Configuration (Voice) Lowest Quality

	Constant Bit Rate Pre-set Configuration (Phone)            .

	Constant Bit Rate Pre-set Configuration (Tape)              .

	Constant Bit Rate Pre-set Configuration (Hi-fi)              .

	Constant Bit Rate Pre-set Configuration (CD)                .

	Constant Bit Rate Pre-set Configuration (Studio) Highest Quality

	Decoding




Following the test procedure as described for PGP previously, the results were identical for both version of LAME. This concludes that the modified LAME (version with I/O calls removed) is working correctly and hence can be used as part of the DEEP 3 system.

Integration

2 Encryption and Decryption

2.1 Introduction

PGP (Pretty Good Privacy) was selected to be the encryption algorithm due to many factors highlighted in an earlier report, the main factors being that it is an open standard and is widely regarded to be cryptographically secure. The algorithm uses a key pair; this consists of a public key which is used to encrypt the files, and a private key which is used to decrypt the files. The public key is broadcasted or placed somewhere that it may be accessed by other users. The private key is held securely by the user and is used to decrypt messages encrypted using the corresponding public key.

PGP adds an extra level of security on top of this by locking the private key using a memorable pass-phrase, and linking the public key to a username. The specific instance of PGP used in this project implements the IDEA algorithm as opposed to other versions that implement the RSA algorithm. This is due to export restrictions concerning PGP using RSA. This version of PGP is only available for download within America or Canada[
]. The internationally available versions of PGP all incorporate the IDEA algorithm and are available for download from [www.pgpi.org]. Further information surrounding the export restrictions and licensing of PGP can be found at [
].

2.2 Version Selection

One of the prerequisites was that the PGP code needed to be portable; it needed to be able to compile under Cygwin and also in Visual C++, due to the two alternative design methodologies. Having carefully reviewed all the internationally available versions of PGP, it was decided that the most suitable version was 2.6.3. Later versions of PGP include code for distributing public keys on the Internet. This would be redundant code and therefore surplus to requirements. This redundant code would need to be removed in order to keep the program to a minimum size, enabling more efficient use of the FPGA’s memory banks. In doing this there would be a high risk of introducing bugs into the code and therefore it was deemed any benefit achieved from implementing a newer release of PGP would be offset by having to make large alternations to the code. As a result a stable earlier release of PGP that compiled under both Cygwin and Visual C++ was selected as the best candidate for the project.

2.3 Key Strength

The version of PGP chosen for implementation supports three different key strengths.

512 bits – Low commercial grade, fast but less secure.

768 bits – High commercial grade, medium speed, good security.

1024 bits – “Military” grade, slow, highest security.

2.4 Code Alterations

As stated above alterations to the code are undesirable and should be avoided where possible. However, after completion of detailed research it was concluded that some changes to the source code were inevitable due to the restrictions on the final implementation of the code on the gates of the FPGA. When the code is finally placed on the FPGA it will not have any direct access to any I/O device such as the host PC’s hard drive, display or input devices. Therefore no code that issues an I/O call should be placed on the FPGA. Instead, all I/O calls should be removed from the original code and the call to the I/O device reissued from a separate header file. This means when the code is implemented on the gates of the FPGA all I/O calls can be made from a separate co-processor where necessary. Therefore all I/O calls need to be removed from within the PGP code enabling it to run effectively upon the gates of the FPGA.

2.5 Method of Alterations

There were several methods identified as possible ways of removing the I/O calls from the PGP code, but the method that offered the highest accuracy and the most ease of use was used. Methods involving making changes to the code line by line were deemed too error prone and laborious. The method that was implemented was to ignore all default libraries within the PGP code and then compile the program and see where the errors were being raised. This was accomplished by disabling *.LIB linking within MS Visual C++. The compiler threw linking errors, which were references to all the I/O functions that had external references to the ignored libraries.

When an error was located using the method described above, the I/O call was replaced with a new function call. This new function call was a call to a function in a specially written header file where the original I/O call was reissued. This is shown below
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Figure 1: Alteration method example

A list of all the functions that were replaced together with their replacement functions is contained in APPENDIX A: PGP and LAME integration. 

2.6 Problems Encountered

When the method of removing the default libraries to identify I/O calls was selected it was envisaged that this would clearly identify all I/O calls present within the code. In practice when the default headers were removed the majority of the errors were obvious where the I/O call was being made from. This left a small proportion of the errors, and the location where they were being raised within the code could not be identified. This was caused by the actual I/O call taking place somewhere within the default library. Therefore, the actual cause of the error was not highlighted as an error within the source, but inside the header file. The problem lay in linking the error in the header file to the calling function within the source code. Three methods were employed to overcome this problem.

The first method was to read through the code and identify functions known to be I/O calls that had not been replaced and had not been clearly identified by removing the default libraries. An example of this was the error “filbuf” which was generated when the code was compiled without the default libraries. After examining the file where this error was being raised, it was noted that “getc” had not been identified as an IO call by the compiler. From prior experience it was known this is an I/O call present in the library “stdio.h”. Upon replacing this function the error was removed.

The previous method was successful at removing some errors, but was not sufficient to remove all the remaining errors. As a result, a more effective method was required. The second method employed was to re-include all the default libraries again, but remove all headers from the file where the error was occurring, with the exception of the I/O calls header, “fgpa_shared.h”. Assuming all I/O calls within the code had been removed apart from the ones that would cause errors, when the code was compiled, instead of flagging errors where I/O calls occurred within the code, it would flag places within the file where library calls would not yet have been removed.

The third and final method that was employed was to search inside the headers that were included within the file where the error was being raised. If an instance of the reported error was located within the header file further examination took place to see if it could be linked to any function. This method was successful in removing the following error. When compiling with the default libraries removed, several instances of the error “ERROR: iob” were raised. After implementing the previous two approaches there was no obvious link to a function call within the code. Thus, the above implementation was put to practice. Upon searching in the stdio.h header file, the following lines of code were identified as possible causes:

#define stdin  (&_iob[0])

#define stdout (&_iob[1])

#define stderr (&_iob[2])
To test this theorem these function calls were replaced within a file were the unknown error was occurring. The code was compiled and the error was removed, so the remaining files were altered accordingly.

A list of all these type of errors together with their solution/calling function is present in APPENDIX A: PGP and LAME integration.

2.7 Operations

The PGP code is expected to perform three standard functions. These being

1. Generate a new key pair

2. Encrypted a given MP3 using a public key

3. Decrypt an encrypted file using a private key

The command line arguments that are passed to the PGP code to generate the three possible operations are recorded in the appendices. The diagram below highlights how the PGP code will be integrated into the final application.
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Figure 2: PGP and LAME operations

As can be seen from the above diagram it was decided that the file extension *.DP3 will be used to signify an encrypted mp3 generated using the application.

2.8 Testing

As stated earlier in the report, the larger the number of changes that need to be made to a piece of software the larger the risk of introducing bugs. Therefore due to the size of the code and hence the large number of I/O calls that required removing, testing at every stage of the process is essential.

Testing of the system took the following form. When a group of identical I/O calls had been completely removed an initial test was to see if the compiler error disappeared. If this was the case, further tests took place. All default headers were placed back in the source files that had not been altered thus enabling the code to compile. The code was then executed and a sample mp3 was first encrypted and then decrypted. The encrypted and decrypted mp3 were compared against the original mp3 using the “diff” command under Cygwin. This command compares two files to see if any differences exist. 

As encryption makes no actual changes to the binary data of the mp3, the decrypted mp3 should be identical to the original mp3. As a result if the two mp3 files were different, one or more errors were present within the code. The converse is true, large differences should exist between the original mp3 and the encrypted mp3. So the original mp3 and encrypted mp3 were compared to see if they differed significantly. A final listening test was also performed to see if the decrypted mp3 sounded similar to the original mp3.

This process of encrypting and decrypting a sample mp3 and then checking for differences was performed for every group of compiler errors present within the code. Thus for every alteration that was made to the code a test to see the effect it had upon the output was performed. This ensured no errors were being introduced into the code.

MP3 Encoding and Decoding

2.9 Introduction

In previous comparisons between various available MP3 encoders, the conclusion has been reached that LAME is a satisfactory component to use in this project. Some factors of the choice included the fact it is open source, portable, provides good quality encoding and decoding, and is very stable.

LAME development started before 1998 and was considered a patch to the ISO encoding model [
]. However, due to Legal issues concerning the patents on the model, LAME development team designed their own psychoacoutic model to emerge as a distinct standalone MP3 encoder. One important distinction about LAME is that it uses another library called mpg123 [
], which handles the decoding of audio.

The heart of LAME is built on an intelligent sound filtering and psychoacoustic engine (GPSYCHO). The engine has the capability of using various encoding methods with different bit rates and frequencies, depending on user’s requirements for speed, size and quality. LAME supports CBR, ABR and VBR (constant, average and variable bit rates). The use of LAME is free; however MP3 is a patented technology some licensing issues exist. More information about LAME and its licensing issues can be obtained from the official developers’ web site [
].

2.10 Version Selection

Since LAME came to be the chosen MP3 encoder and decoder, it was important to ensure the version to be used supports all viable options such as, CBR, ABR, VBR, ID3 tags, error checking, decoding, etc. In addition, it was important to ensure it is portable, as it is necessary to compile it under Windows and Cygwin.  Fortunately, later versions of LAME support a range of operating systems, most importantly Windows and UNIX variants.

The most stable release of LAME according to various sources on the web is version 3.70, which satisfied all stated requirements and thus was chosen. After some testing, it was found that there were problems with decoding, although the online documentation suggested support was built-in. More investigation was carried out and it was found that that LAME 3.70 did not have integrated decoding support.
The closest version that supported decoding was version 3.83beta. The online documentation emphasises that decoding works, however testing showed that the size of decoded files was significantly different to what was expected.  Unfortunately it was found later that the decoding facility only decoded a certain portion of an MP3 file. For example, decoding a 4:25 minute MP3 file produced a corresponding .wav file that only had 1:06 minutes of music.  Moreover, the original MP3 had a size of 2.5MB, and the decoded file had a size of 22.5MB, which seemed large for only a minute of decoded music sampled at 22.05 KHz with 16 bits per sample.

Finally, more careful effort was put into this so that the same mistakes did not occur.  All later LAME versions were tested, and the next working version with good quality decoding was found to be LAME version 3.87beta.  All versions above 3.83beta were tested and the decoding appeared to be the same for all. Later versions also had extra source code detailing other attributes which were not relevant to the project, and thus were rejected.

2.11 Features

In the encoding part of the application, LAME supports three modes of encoding bit-streams, which are CBR, ABR and VBR. Users can specify explicitly which mode to choose, depending on the quality at which they wish to store their music. There is always a trade-off between quality, speed and size. The higher the quality, the slower the encoding and the larger the encoded sample, and vice versa. For detailed information on features supported by lame, see APPENDIX A: PGP and LAME integration.

2.12 Code Alterations

Refer to Encryption and Decryption: Code Alterations

 REF Encryption_Code_Alterations \h 
 \* MERGEFORMAT 

 REF Encryption_Code_Alterations \h 
 \* MERGEFORMAT  for details.

2.13 Method of Alterations

Refer to Encryption and Decryption: Method of Alterations for details.

2.14 Problems Encountered

System call removal returned a small number of errors that were somewhat ambiguous and indirect.  Refer to Encryption: Encountered Problems for details of some of the problems.

There were other problems identified in the LAME code.  One of these was an external reference to a function called “_ftol”.  Tracing to identify the function’s source failed as it does not exist in the application source, nor did it in the LAME header files. A second method was tried, which was involved a *.MAP file to identify a reference to all called functions and symbols in the application’s object code. This method identified the call as one which existed in Microsoft’s C run-time Library file LIBCD.LIB. Further investigation on the Internet revealed that this function is used for floating point to long conversion. Several attempts to remove this reference failed. One of the suspected uses of _ftol was for type casting, as well as %g and %u format specifiers in (f)printf system calls. Simply commenting out those parts of the source code was ineffective. Ultimately it was not possible to remove this function call to the shared module, as it links to the shared library module at run-time.

Two other functions gave similar problems, _fltused and _chkstk.  Coincidentally, all three functions are referenced in LIBCD.LIB.  _fltused indicates that a float conversion or operation may be necessary.  _chkstk relates to stack checking operations performed by the kernel.  For more information on these three functions see APPENDIX A: PGP and LAME integration.  It was decided not to spend a great deal of time with these functions as it was suspected that they will be eliminated by the fixed point porting.

2.15 Operations

See Encryption and Decryption: Operations for details.

2.16 Testing[
]
Testing whether all system calls have been removed was identical to the testing carried over with the PGP code. On ignoring default libraries in the Microsoft’s Visual C++ IDE, it was ensured that all external references to system calls appeared for the shared module only.  However, due to the unidentified errors mentioned in the Problems Encountered sections, it was decided to leave the three errors for the time and continue to release a software only prototype, by integrating LAME and PGP.

Most importantly it was ensured that the encoding and the decoding were performed correctly.  For the encoding, CBR, ABR and VBR were tested with different bit rates and frequencies.  Encoding tests were carried on a single *.wav file of size 22.4 MB, and in all cases the encoding resulted in a complete MP3 file.  Some simple listening tests showed the resultant file was of comparable quality.  The inverse operation was applied for the decoding.  Versions 3.70 and 3.83beta resulted in wrong decoding and thus all system call removal efforts and testing were lost.  For version 3.87beta decoding was applied, and through listening tests it was concluded that the decoding worked adequately, as the *.mp3 and *.wav files displayed no discernable differences.
The method outlined for identifying and removing system calls, can only assure at this stage that the system calls were removed for parts of the code that were compiled. Some calls were located and replaced using a full textual search of the application source files; for example, references to the “printf” function. There may still exist portions of the code that have some compile and pre-processor directives, which may include some system calls that were not found in the search or did not incur any external reference error.  However, it was ensured that the software worked under both Windows and Cygwin, producing no errors from the I/O and system call removals.

Integration

2.17 Integration plan
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Figure 3: Integration Plan

The integration plan follows two very similar routes and then merges to form a single software application. This section outlines the different stages of the integration plan and then elaborates more in the software integration part.

2.18 LAME or PGP Debug and release versions

This phase entails ensuring the chosen versions of the applications should be compiled and run successfully as both debug and release versions. The debug version is needed to enable line coverage and line timing profiles, which may certainly be important accounts in the profiling stage. The release versions simply exhibit more compiler optimised code and may show better results than debug version profiling.

2.19 LAME and PGP system call removal

System call removal must be applied to both applications to ensure the profiling accounts only for the code and not be affected by I/O delays, communication overhead and multitasking.

2.20 LAME and PGP Profiling

In order to formulate a strategy for the functional partitioning of the software, a sound understanding of the software's behaviour must be obtained. As previously mentioned in the D2 (High level design) documentation, an assessment of the behaviour of LAME can only be solid using different sound files, each exhibiting different properties, such as voice, pitch, instrumental properties, etc. These files may show different behaviour of the software and yield different timing results both for the MP3 related tasks and perhaps for the PGP tasks.  Thus, the following steps outline DEEP3's method of profiling:

1. Using all viable options the software supports under homogeneous conditions:

· Dissimilar test files, with a broad range of sounds. Typically 3-4 sound samples.

· Take the average of all trials.

2. Function time profile for the viable options (to find out where the code spent most of its time):

· Timing details and hit counts (Function + Child).

· This is worked out per MB of sound data.

3. Compare results and produce a summary of findings.

4. Function coverage (Identifies which parts of the code were executed and which parts did not).

5. Call graphs (Static and possibly dynamic). This helps greatly in the partitioning stage, as it makes program visualisation much simpler.

2.21 LAME and PGP Compiling under Cygwin

The ASIP route requires the code to be compiled under Cygwin since it is the development environment for that route. Thus it must be ensured that the make file for the project is universal for Microsoft’s Visual C++ environment and Cygwin’s (GCC’s) environment.

2.22 Software Integration

The integration team was faced with three integration options.  The first of these was releasing an executable (*.exe) application. The second choice was to create static libraries (*.lib files) for LAME on its own and PGP on it own and then link them to a console application which calls the main routines from both libraries to perform DEEP3 operations.  The third choice was to create dynamically linked libraries (*.DLL files) in a similar way to the statically linked libraries option.

The decision was made to apply the integration using the static library option. The first task was an investigation into how the two large applications could be integrated. Initially, simple tests for two programs were applied; one that calculated factorials, which was created as a static library, and the other program, which called the routine from the library file. The only problem with linking the two files was the implementation file extension differences.  One had a *.c extension while the other had a *.cpp extension. The problem was immediately resolved by consulting the online help.

The same operation was applied on LAME and PGP through the changing of the main functions to lame_main and pgp_main and allowing the console application to pass the correct arguments to them.

Fixed-Point Issues

3 Fixed-Point Migration

3.1 Introduction

One of the major stages of this project was the migration of the LAME MP3 codec from floating point arithmetic to fixed-point arithmetic. This stage was seen as major due to the high risk-level involved. The changes to the code would probably cause a change in the quality of the audio produced. For this reason it would not be easy to verify that the changes did not alter the algorithm and that the errors introduced were because of the limited range / precision of the fixed-point type. 

Fixed point migration was needed because research suggested that floating point values not only required more processing than integral values, they also required more gate area on the re-configurable device [
]. In order to maximise the number of functions on the FPGA, gate area had to be conserved. This would allow a greater level of parallelism in the application, especially between the host CPU and the FPGA, which should improve performance. As integral operations execute in less time than floating point operations, further performance gains are expected from migration to fixed-point arithmetic. Also, “all Handel-C conversions start by converting floating-points to integers [fixed-point]” [
].

3.2 The Acceptance criteria for the Migration plan

Most of the other major milestones in the development process can be tested by co-simulation of previous prototypes and the version under consideration, and by comparing the output. The fixed-point version can only be verified against the floating-point version by measuring the percentage error in the expected and actual results as well as by listening tests. It would also be difficult to trace errors introduced by changes to the original application due to the volume of functions in LAME and the complexity of the codec algorithms. A plan needed to be devised that reduced the number of changes to the application, until the range and precision for an output that varied from the floating point by a slim margin had been devised. This was particularly important because of the number of hard-coded lookup tables containing floating-point values in the codec.

The experience of removing the system and I/O calls in the original source and redirecting these requests to a system and I/O module made the development team impose a further constraint on the fixed-point migration; it should require less effort than redirecting the system and I/O services. This requirement had to be met despite the fact that some design space exploration would be needed before the range and precision of the fixed-point type was finally decided. The final requirement was that it should be possible to verify that the code no longer contained floating-point values or floating-point type operations upon completion of the migration process.

3.3 Analysis and Alternatives

3.3.1 Range and Precision

The usual method for porting an application from floating point to fixed-point data types involves mathematical analysis of the algorithms involved to determine the dynamic range of all values [
]. If the analysis shows that the range and precision needed is too great for the memory requirements of the application, say 40 bits are needed but only 32 bit data types are supported on the target architecture, then alterations are made to the algorithm to scale the values at various stages of the algorithm, so they fit into the memory available. For example, if it was found that the values were always a multiple of ten, all values would be pre-divided by the highest common factor before calculation, and then the final result would be multiplied by the highest common factor. As the project does not have a mathematician at its disposal, and this method could prove timely, this route was not taken. 

The developers of the MPEG Audio Layer 3 standard, the Fraunhofer Institute, suggest that an ISO compliant MP3 system is possible with fixed-point number with a 20-bit arithmetic word length [
]. This was the first clue to a possible implementation. Analysis of the hard-coded floating-point values in LAME suggested that the fixed-point type should be signed. Both IEEE single and double precision values are present in the source with the precision of these values being up to 10 and 20 decimal places respectively (34 to 67 bits of precision respectively). This meant that a precision was needed that supported values to between 10 and 20 decimal places. It is not a major aim of this project to produce a high audio quality implementation of MP3 so a compromise on the precision or the range was possible, if, and only if, the sound was suitable for demonstration purposes.

3.3.2 Fixed-Point Library

Once word lengths are provisionally set, a fixed-point library is utilised for the computation if the architecture does not already support fixed-point numbers. The 80x86 architecture does not directly support fixed-point operations, so a library had to be acquired or built. As part of the project’s rapid application development policy and the time constraint imposed on this phase, it was decided that an existing fixed-point library should be utilised rather than developing one specific to the application. A library was chosen which was specifically designed for use in C code as well as code written in Handel-C. 

The Mariachi fixed point library [
] supports conversion of float and integral values to a user defined fixed point type, as well as conversion of the fixed point value to either an integer or floating point value. Trigonometric transformations are supported via a fast lookup table. Multiplication and division are the only arithmetic operations supported directly from the library. 
Embedded processors that use fixed-point arithmetic usually saturate the result of the calculation on overflow [
]. When the result of an operation is greater than the greatest positive number that can be represented, the result is set to the maximum number that can be represented. When the result is less than the smallest negative number that can be represented, the result is given as the smallest negative number that can be represented. In the best case, overflow causes the signal to be distorted. An MP3 song may sound off-key because of overflow [11]. By default Mariachi does not support signed numbers. Functionality was added to support signed numbers, as well as negative overflow. Addition and subtraction were added for completeness sake, as was support for saturation of addition and subtraction.

The acquired library was then tested for correctness and also to ensure that the programmers understood how to use the basic functions of Mariachi. During testing it was found that fixed-point division was not as accurate as needed for the application under development. Minor alterations were therefore made to Mariachi for greater precision in division. When the result of an operation requires more precision bits than are provided in the fixed-point specification, quantisation errors occur. Quantisation errors cause noise; an MP3 song will sound scratchy because of quantisation errors [11].

3.3.3 Combining LAME with Mariachi 

The next step in migration was deciding how to combine LAME with the fixed-point library. The team decided that an intermediate step was needed where the hard coded floating point values were allowed to coexist with the fixed point data type until the format of the fixed point number was formalised. This would reduce the number of changes necessary when the range and/or precision of the fixed type would be altered for greater sound quality. 

It was also decided that it would be too time consuming to convert each floating point type operation in the application to a function call to the Mariachi library, either manually or by using automatic means. As LAME is written in C, it could be potentially easier to port the code to C++ and introduce a class, which would perform the fixed-point calculation by operator overloading and then call the appropriate function in Mariachi. From this base type two classes could be derived, one that would replace single precision operations in the original code, and the other that would replace double precision operations. This has the benefit of reducing the amount of memory needed by the application. If all the floating point values were replaced by a single fixed point type that was nearly as precise as a double, it would require more memory than if there are two different fixed types. Another factor in the reasoning was that having all the values fixed to similar precision to a single precision float would probably result in underflow (quantisation error) and significant loss of sound quality. 

Furthermore, it was decided that an intermediate fixed type that was somewhere between the precision of a single and a double would be developed. If this type proved to be adequate both in terms of memory requirements and sound quality, this would be the preferred option for full implementation of fixed types in the entire source.

3.3.4 Porting LAME from C to C++

As the ASIP route relies heavily on the fact that the application compiles using GCC, it was essential that when LAME was ported to C++, the changes that were made were for the most part ANSI C++ compliant. To ensure compliance Microsoft Extensions to C++ were disabled in Microsoft Visual C++ by checking the disable language extensions check box in the customise category of the C/C++ tab in the project settings dialog box.

The next step was to assess the effort required in porting the C to C++. First the project was recompiled with the /TP option which tells the Visual C++ compiler to compile all source files as C++ even if their extension is *.c.  This action caused the compiler to flag over 350 errors. Further investigation indicated that the majority of these errors were due to values not being cast to the appropriate type. By far the most frequently occurring error was due to variables not being cast to a “lame_internal_flags” pointer. Once all errors resulting from values not being type cast to the appropriate type had been fixed, the remaining errors were linker errors. These turned out to be from pre-processor directives to define certain functions and variables as externally C declared. Commenting out these directives resolved most of these errors. 

3.3.5 The Fixed Point Class

The class was implemented following the general rules for operator overloading [
]. The main rule of interest to the development team was that overloaded operators obey their typical use with built-in types. This meant that the class’ operators would obey the rules of precedence, grouping, and number of operands when combined with floats, integers, and all standard C types.

There are two methods of implementing the operator functionality. These are class member functions and global functions with friend access. Global functions are very useful for combining the class with basic types as the order of the operation can be specified. For binary operators this means that two implementations of the operator must exist. For example, the addition operator for integers in which the class had to be specified for the integer first and the class second as well as for the class first and the integer second. To ensure that either implementation executed in the same time, each method was specified as direct calls to Mariachi rather than implementing one version of the method and reusing this functionality in the other. Comparison, arithmetic and type cast operators were specified and tested for the fixed-type class.

Once the class had been adequately tested, it was integrated with LAME by searching and replacing floating-point type declarations with the fixed-point class. At the time of writing, all single precision floats in the encoding process have been replaced. The team is in the process of replacing double precision floats with an appropriate fixed-point type and removing floating-point types from the decoding algorithm. Some work also needs to be done to make fixed-point versions of all the floating point libraries used in LAME such as exponential and trigonometric operations.

3.3.6 Verifying Removal of All Floating point values

This task will be done in two different ways. First, the files will be searched for any variables still declared as single or double precision floats. Next, a regular expression search will ensue to find any hard-coded floating-point values. Finally, an assembly listing of the project will be parsed for any lines containing an 80x86 floating-point instruction. Where floats are found they will be replaced with the fixed-point type. 

3.4 Conclusion

In this section an overview of the method used to port LAME from floating-point arithmetic to fixed-point arithmetic was described. The method uses a fixed-point library and an object with arithmetic, comparison and type cast operators overloaded. Migration to fixed-point required the source to be ported from C to C++. Some work still remains before the code is fully migrated to fixed-point arithmetic.

Static analysis

4 Static Analysis of LAME

In this section, the transformations occurring in MP3 are described, with explanations of why they are used. This includes the formula of the relevant transform and analysis of the algorithm to determine possible functional units to be added to the ASIP. Transformations that could be run in parallel on partitioning route are also considered.  Furthermore, there is a brief mention of some optimisations in the LAME source such as unrolling MDCT.

4.1 Encoding

Figure 1 below shows the typical MP3 encoding process. The model indicates that it is possible to have Filter Bank and MDCT in parallel with FFT and psycho-acoustic model. It is also possible to execute the coding of the side-information concurrently Huffman encoding. The remaining processes can be pipelined between and after each of the paralleled processes. 
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Figure 1: Detailed view of MP3 Encoding (After [4])

4.1.1 Poly-phase Filter Bank

This stage is the key component common to all layers of MPEG Audio compression. The poly-phase filter divides the audio signal (512 PCM samples) into 32 equal-width frequency sub-bands [
]. The filter only provides reasonable frequency resolution but has very good time resolution and needs very little computation compared with a direct implementation of a convolution filter [8]. The filter and its inverse are both lossy transformations. Part of the original audio signal is loss and can never be recovered. The error introduced by the filter’s lossy compression is designed to be minimal and inaudible.

The equal width sub-bands do not correspond to the critical frequency bands of the human auditory system. Some critical bands have a greater width than the equal-width bands. Others have a smaller width than the equal-width sub-bands and so it is possible for the equal-width bands to span several critical bands.

The filter outputs overlap in the frequency domain. A signal at a single frequency can be covered by two adjacent filter outputs. This would normally produce a considerable amount of aliasing. The decoder’s synthesis filter bank cancels these affects. 

The operation of the filter is governed by the equation below.
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Where:

i is the sub-band index and ranges from 0 to 31,

st[i] is the filter output sample for i-th sub-band at time t, where t is an integer multiple of 32 audio sample intervals,

C [n] is one of the 512 coefficients of the analysis window defined in the standard,

x [n] is an audio input sample read from a 512 sample buffer, and
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 are the analysis matrix coefficients

The ASIP may have a fast multiply and accumulate (MAC) unit and cosine function in order to implement a high performance version of the poly-phase filter. The partitioning route might decide to compute all or some of the 32 filter-bank outputs in parallel as one filter-bank’s output is not dependent on any of the others.

4.1.2 Modified Discrete Cosine Transform (MDCT) 

Layers I and II of the MPEG audio standard do not use an MDCT. Layer III introduces this transform to compensate for some of the deficiencies of the filter-bank. The MDCT transforms the samples into frequency components on which the bit allocation (Huffman coding) is performed after quantisation. The MDCT provides better spectral resolution than the filter-bank. The equal-width sub-band outputs of the poly-phase filter-bank are further divided. These shorter-width frequency bands can be more easily grouped into the critical sub-bands of human hearing. Higher-quality audio and greater compression can be produced by taking into consideration the psycho-acoustic effects within these critical sub-bands in the quantisation stage than is possible using the filter-bank outputs directly [4]. The MDCT removes artefacts introduced by overlapping output bands of the poly-phase filter bank [8]. The MDCT process is loss-less unlike the poly-phase filter and so does not introduce errors into the data. Although the MDCT has superior properties to the poly-phase filter-bank, the filter-bank is included to make MP3’s output similar to Layer I and Layer II. 

In MPEG audio layer III encoding, the MDCT used is of window size N=36. Each element in the window produces 18 output coefficients. Thus when each of the 32 sub-bands from the analysis filter-bank is windowed, 576 (32 sub-bands * 18 MDCT coefficients/sub-band) MDCT coefficients are produced. 

The MDCT equations [
] are shown below. If the input samples are in array xi then the samples are first windowed by a function dependent on the block type involved and the results placed in zi.

For block type = 0 (normal block)
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For block type = 3 (stop block) 
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For block type = 2 (short block), the 36 samples are first sectioned into 3 overlapping blocks.
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Once the input samples are windowed, the MDCT is performed according to the following equation:
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These equations once again show that the ASIP may need to have a fast multiply and accumulate (MAC) unit, and cosine functional unit if there is to be any performance gain. A sine function might also be implemented re-using the cosine function, as their functions are essentially the same except for a 90-degree phase shift. Alternatively, a unit that does the complete modified discrete cosine transform might be implemented.

The MDCT in LAME was hand unrolled to exploit the symmetry of the trigonometric factors such that successive multiplications were replaced with additions. This reduced the computational load from 1300 additions and 650 multiplications in the ISO example encoder to 244 multiplies and 324 additions. According to Cheng this resulted in a 70% reduction in the time to compute the MDCT [9]. This suggests that implementing the function as is in hardware, then paralleling the computations that do not rely on symmetry, may significantly improve performance.

4.1.3 Quantiser and Huffman Coding

In the quantisation stage each critical band is allocated a scale factor. The quantisaion is non-uniform as each MDCT coefficient may have a different scale factor. Uniform quantisation would scale all values by the same amount. The larger this scale factor, the greater the number of bits allocated to this critical band. Thus by varying the scale factor one can control the degree to which the audio is compressed in favour of sound quality or bit-rate. 

The Layer III quantiser raises its input (the MDCT coefficients) to the power 3/4 before quantisation to provide a more consistent signal-to-noise ratio over the quantiser output values. The ASIP may therefore implement a power function. The quantisation results from the truncation of the product of MDCT coefficients and the scale-factor for a critical band to an integer value [
] and is therefore a form of lossy compression. The dynamic range of the quantised values is [-1, 1]. 

The common method for implementing the quantiser and Huffman encoder in a Layer III encoder is with two nested iteration loops [4]. The outer loop (noise control loop) first makes an estimate about the scale-factors for each critical band and calculates the noise (audibility of the error) introduced by quantisation. If the noise introduced is greater than the masking threshold determined by the psycho-acoustic model, the encoder increases the scale-factor of that band so that more bits are allocated after quantisation, effectively decreasing the audibility of the error introduced by quantisation. The audible noise (masking to noise ratio (MNR)) for each sub-band is computed by the following equations:
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where SNR is the signal to noise ratio and SMR is the signal-to-mask-ratio from the psycho-acoustic model.
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where 
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is the original signal and 
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 after quantisation.

The SNR equation indicates that the ASIP might have a logarithmic function. Once again a MAC might be used as summation of values squared could be interpreted as a multiply and add. The partitioning route might want to compute the MNR for each critical sub-band in parallel.

If the MNR value is greater than zero, the quantisation noise in that sub-band will be completely imperceptible to humans. If the sub-band with the most negative MNR has the most audible noises, and so must be allocated the most bits.

The inner loop (rate control loop) determines the number of bits required to Huffman code the quantised values. The more frequent, smaller quantised values are assigned shorter code words by the Huffman code tables. Huffman coding is a lossless form of compression. If the number of bits required is too great for the specified bit-rate, a new scale factor is determined by decreasing the last scale factor by some step size for each offending critical band. The inner-loop is repeated until the Huffman-coded data satisfies the bit-rate. If the inner-loop has made changes to the scale-factors, the outer-loop must re-calculate the noise and verify that it still is below the masking threshold.

The process of determining the scale-factors is called analysis-by-synthesis in literature [4] because of its determination of a result based on trial and error. The resulting scale-factors are transmitted as part of the side-information field of the MP3 frame.

4.1.4 Fast Fourier Transform (FFT)

The FFT is used to give the psycho-acoustic model a better time to frequency mapping than provided by the poly-phase filter-bank. Very fine frequency resolution is needed for an accurate calculation of the masking thresholds in the psycho-acoustic model and FFT provides this. 

A standard Hann weighting is applied to the audio data before the Fourier transformation to reduce the edge effects of the transform window.1024 audio samples are considered in the FFT analysis window. This does not completely cover the 1152 samples (2 * 576 quantised MDCT coefficients) that may be in an MP3 frame. 

The equation below shows the standard FFT equation where yt is an audio sample and n is the number of samples in the analysis window.
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Once again analysis indicates the ASIP might include a MAC unit. It may also have exponentiation function.

4.1.5 Psycho-acoustic Model

The psycho-acoustic model uses the frequencies produced by the FFT to determine the signal to mask ratio. In perceptual coding schemes, frequencies are often organised in critical band quanta in order to simplify psychoacoustic calculations. The corresponding unit is called Bark. Two adjacent critical bands have a bark difference of 1. 

At each frequency, there is a minimum intensity, below which sound is inaudible. No information about these inaudible frequencies. This minimum intensity is called the absolute masking threshold. There are two competing models used in the psycho-analysis. “Psycho-acoustic model 1 is less complex the psycho-acoustic model 2 and has more compromises to simplify the calculations” [8]. Model 2 includes specific modifications to accommodate the use of the MDCT in Layer III.

Model 1 determines the mask empirically using the following equation:
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There is great room for parallelism in this equation. The ASIP designers might include a power functional unit and an exponential unit to improve performance of this calculation.

Model 2 uses a spreading function is used to model intra- and inter-band masking across critical frequency bands determined by the equation:
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where z = zi – zj is the frequency difference in bark.. zi is the central bark of a band spread into, zj is the bark value of the spreading signal.

The spreading function equation indicates that a MAC might be used in the ASIP. This unit could calculate the value to be square rooted. A square root unit might also be added to the ASIP’s architecture. The equation does not allow much parallelism in the partitioned system. 

As the MP3 standard gives developers the freedom to implement a psycho-acoustic model besides the two example models provided with the standard, the remaining stages of the psycho-acoustic model are not described in detail here. The methods generally calculate the average signal energy in each critical sub-band from grouped FFT results. The signal to mask ratio (SMR) is then computed by dividing the audibility threshold.
4.2 Decoding

4.2.1 Inverse MDCT [
]
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 for i = 0 … N-1 and N=12 or 36

Static analysis of PGP 

4.2.2 Introduction

This section will give an overview of the workings of PGP (Pretty Good Privacy), in particular focusing on the algorithm used to perform the encryption/decryption, IDEA (International Data Encryption Algorithm).

4.2.3 PGP Overview

PGP works by initially generating a public/private key pair. The private key is secured using a memorable pass-phrase, and the public key is broadcast or placed somewhere it may be accessed by other users. Anyone who has access to a user’s public key can then securely encrypt a file. This file can then be transmitted or stored securely, safe in the knowledge that the only person who can decrypt it is the holder of the corresponding private key. 

When the file is decrypted, the user attempting to decrypt the file is prompted for the pass-phrase, which was entered at the time of the key generation. If the pass-phrase is entered correctly the private key is unlocked and used to decrypt the file. Consequently, PGP offers a higher level of security compared to other distributed key algorithms as the private key is protected by an extra layer of security.

4.2.4 Keys

The various keys strengths offered by the version of PGP implemented in the project have been highlighted in another section of the report. This section will focus of the methods used to generate the keys and how the private key is secured.

The randomness of the key generation is critical to the security of the algorithm, hence to generate a user’s random public key. PGP uses a probabilistic primality tester [
], that gets its initial seeds from measuring the user’s keyboard latency while typing. Once public and private keys have been generated, the user’s private key is secured by encrypting it using a hashed pass phrase instead of a password.

4.2.5 IDEA

IDEA is a block cipher algorithm operating on 64-bit blocks. The same algorithm is used for both encryption and decryption. The algorithm uses a mixture of confusion and diffusion. Confusion is the process of hiding any relationship between the plaintext, the ciphertext and the key. Diffusion on the other hand is the process of spreading the influence of individual plaintext or key bits over as much of the ciphertext as possible [
].

To utilise these two methods, three operations are performed on the inputted 64-bit block. These are [
];

1. XOR

2. Addition modulo 216
3. Multiplication modulo 216 + 1

4.2.6 Algorithm Description

As stated earlier in the report the input to IDEA is a 64-bit block. This 64-bit block is divided into four 16-bit sub-blocks x1, x2, x3, and x4. These four sub-blocks form the initial input to the IDEA algorithm. Therefore, the three operations highlighted above are applied to these sub-blocks together with the user’s public key, in order to generate the encrypted file. 

The IDEA algorithm consists of eight rounds. A single round consists of the four inputted values being XORed, added and multiplied with one another and with six 16-bit sub-keys. Between rounds, the second and third sub-blocks are swapped. Finally, the four sub-blocks are combined with four sub-keys in an output transformation. The precise order in which the three operations are performed on the sub-blocks will now be examined. The sequence of operations for a single round is as follows [
];

1. Multiply X1 and the first sub-key

2. Add X2 and the second sub-key

3. Add X3 and the third sub-key

4. Multiply X4 and the fourth sub-key

5. XOR the results of steps (1) and (3)

6. XOR the results of steps (2) and (4)

7. Multiply the results of step (5) with the fifth sub-key

8. Add the results of steps (6) and (7)

9. Multiply the results of step (8) with the sixth sub-key

10. Add the results of steps (7) and (9)

11. XOR the results of steps (1) and (9)

12. XOR the results of steps (3) and (9)

13. XOR the results of steps (2) and (10)

14. XOR the results of steps (4) and (10)

The output from the first round is the values generated by (11), (12), (13) and (14). The values generated from (12) and (13) are swapped, and this forms the input to the second round. This process continues for eight rounds in total, except on the last round where the values from (12) and (13) are not swapped. After the eight rounds have been performed there is a final output transformation. This takes the form;

1. Multiply X1 and the first sub-key

2. Add X2 and the second sub-key

3. Add X3 and the third sub-key

4. Multiply X4 and the fourth sub-key

Finally, the four sub-blocks are recombined to produce the ciphertext. This entire process is shown in the diagram below [
].
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Figure 5 : Cihpertext (64 bit)
4.2.7 Key Selection

The IDEA algorithm uses six keys per round and four extra keys for the final output transformation, hence a total of 52 keys are used in the encryption/decryption process. Initially the key is divided into eight sub-keys, the size of which is dependant upon the level of encryption the user selected upon key creation. These are the first eight sub-keys used by the algorithm; the first six are used for the first round and the last two for the second round. Then the key is rotated 25bits to the left and again divided into eight sub-keys. The first four are used in round 2; the last four are used in round 3. This process is repeated until the end of the algorithm.

Decryption uses the same process, apart from the sub-keys are reversed and slightly different. The decryption sub-keys are either the additive or multiplicative inverses of the encryption sub-keys. For the purpose of IDEA, the all zero sub block is considered to represent 216 = -1 for multiplication modulo 216 + 1; thus the multiplicative inverse of 0 is 0. The table below shows the encryption and decryption sub-keys [18].

	Round
	Encryption Sub-Keys
	Decryption Sub-Keys

	1st
	Z1(1) Z2(1) Z3(1) Z4(1) Z5(1) Z6(1)
	Z1(9) - 1 -Z2(9) -Z3(9) Z4(9) - 1 Z5(8) Z6(8)

	2nd
	Z1(2) Z2(2) Z3(2) Z4(2) Z5(2) Z6(2)
	Z1(8) - 1 -Z2(8) -Z3(8) Z4(8) - 1 Z5(7) Z6(7)

	3rd
	Z1(3) Z2(3) Z3(3) Z4(3) Z5(3) Z6(3)
	Z1(7) - 1 -Z2(7) -Z3(7) Z4(7) - 1 Z5(6) Z6(6)

	4th
	Z1(4) Z2(4) Z3(4) Z4(4) Z5(4) Z6(4)
	Z1(6) - 1 -Z2(6) -Z3(6) Z4(6) - 1 Z5(5) Z6(5)

	5th
	Z1(5) Z2(5) Z3(5) Z4(5) Z5(5) Z6(5)
	Z1(5) - 1 -Z2(5) -Z3(5) Z4(5) - 1 Z5(4) Z6(4)

	6th
	Z1(6) Z2(6) Z3(6) Z4(6) Z5(6) Z6(6)
	Z1(4) - 1 -Z2(4) -Z3(4) Z4(4) - 1 Z5(3) Z6(3)

	7th
	Z1(7) Z2(7) Z3(7) Z4(7) Z5(7) Z6(7)
	Z1(3) - 1 -Z2(3) -Z3(3) Z4(3) - 1 Z5(2) Z6(2)

	8th
	Z1(8) Z2(8) Z3(8) Z4(8) Z5(8) Z6(8)
	Z1(2) - 1 -Z2(2) -Z3(2) Z4(2) - 1 Z5(1) Z6(1)

	Output

Transformation
	Z1(9) Z2(9) Z3(9) Z4(9) 
	Z1(1) - 1 -Z2(1) -Z3(1) Z4(1) - 1


Table 1:  Encryption and Decryption sub-keys
4.2.8 Speed of IDEA

The current speed of the IDEA algorithm has been compared to other popular encryption algorithms and to itself on different architecture machines. The results are as follows [
]. Current software implementations of IDEA are twice as fast as DES. IDEA on a 33 megahertz 386 machine encrypts data at 880 kilobits per second, and 2400 kilobits per second on a 66 megahertz 486 machine. The majority of time is occupied by multiplications as to multiply two 32-bit numbers on a 486 requires 40 clock cycles, 10 on a Pentium.

Profiling
5 Profiling

5.1 Introduction

The basis for performing the profiling is to identify candidate functions within the integrated application which are suitable for being placed on the FPGA. The precise details for selecting these functions will be discussed in depth in another report, but the primary goal is to identify the functions that occupy the majority of the execution time, and then place these functions on the FPGA. Profiling can also be used to give an indication of any special operators that might need to implement within the ASIP. For example if the profiling indicated that the function that occupied the majority of the execution time performed a large amount of multiplication, it would make sense to implement a fast multiplication unit within the ASIP. 

5.2 Profiler Selection

As was highlighted in an earlier report, it was decided to us the Microsoft Visual C++ 6.0 Profiler, as this was deemed the simplest and easiest to use. It offers the advantage of being integrated into the Microsoft C++ IDE, making it easy to setup alongside the application.

5.3 Profiler Information

The profiler will provide the following information:

	Information
	Meaning

	Function Time
	Measurement of the amount of time consumed by each function present within a program

	Function + Child Time
	Measurement of the amount of time spent in each function plus the time spent in functions that are called from within the current function.

	Hit Count
	The number of times a function is called


Table 2: Profiling Information

The above information is also represented as a percentage of the total execution time. This is especially useful when comparing results from different architecture machines.

5.4 When and How to Profile

Much consideration was given to when and how the code should be profiled. Due to the large alternations that were to be made to the code, i.e. removal of I/O calls, integration of Lame and PGP (Pretty Good Privacy) and porting from floating to fixed point, the precise stage at which the code would be profiled needed to be decided upon. It was decided that the code should be profiled after all the I/O calls had been removed and prior to the integration of the two applications. The reasons for these decisions were as follows. The code should be profiled separately as this is how it would be implemented within the final application i.e. LAME would completely encode a sound file and then PGP would encrypt it. Hence profiling the integrated application would make it difficult to infer results for the individual components. As a result, LAME and PGP were profiled independently. The code would be profiled before being ported to fixed point, as profiling it in its original state would give a more accurate representation of which functions were taking up the majority of the execution time. 

5.5 Method of Profiling

It was decided that a selection of music should be used to profile the code, consequently four music genres were selected to profile the code with; they were classical, pop, rock and jazz. As the profiler introduces an overhead in the execution time, the results it generates are deterministic. Thus, it was agreed that that the profiling should be performed three times for every switch used within LAME and PGP. The average of the three runs would then be taken. This was performed to minimize the risk of freak results, which would ultimately result in inappropriate functions being selected to be placed on the FPGA. 

As has been highlighted, four types of music were used, with the profiling being performed three times for every switch used. Therefore, the PGP code, which offered a maximum possible number of three switches, for the three different key-strengths, would require a total of seventy-two profiling runs for both encryption and decryption. LAME has considerably more switches than PGP, so it was decided that a simplified set that would be used within the final application would be used to profile the code. Thus a high bit rate, a medium bit rate and a low bit rate were selected. These three levels of encoding were performed for constant bit rates, variable bit rates and average bit rates. A decoding run was also performed. This simplification of the possible switches used within LAME still required one hundred and twenty profiling runs.

It was decided that a single person could perform the profiling of the PGP code, but the profiling of the LAME code would require dividing up and distributing between members of the group. The natural division point was the four genres of music, so a group member was assigned a particular genre and then performed all the profiling using the simplified set of switches. From prior experience it was deemed unfeasible for an individual to sit and work through all the profiling manually, due to time considerations. As a result, a batch file was written that would perform all the profiling automatically. As the profiling was being performed on different architecture machines under different conditions, the function timings would vary considerably. Thus, it was decided that the percentage of the execution time should be used, as this would enable us to combine our results at the end.

5.6 Presenting Results

Once all the results had been collected, it was decided that the best way to represent the results was graphically, as this was considered the easiest way of extracting the necessary information from the large amount of data that would inevitably be generated. See APPENDIX B: Profiling graphs for profiling graphs.

Conclusions

The conclusions that can be inferred from completing this report are as follows. The most likely functions to be placed on the gates of the FPGA are as follows for PGP;

1. ideaCipher

2. deflate

3. fill_window

4. ct_tally

5. send_bits

The functions most likely to be placed upon the gates of the FPGA for LAME are;

1. calc_noise

2. L3psycho_anal

3. huffmancodebits

4. quantize_xprow

The above conclusions are purely for the partitioning side of DEEP3. Further conclusions can be inferred regarding special operators that would usefully be employed within the ASIP. The functions fpga_sqrt and fpga_exp appear within the top 6% of the LAME profiling results. As a result, the implementation of a fast square root or a fast exponential operator within the ASIP would offer a possible speed advantage. It is therefore concluded that one or both of these operators should be included within the final design of the ASIP. If only one operator can be included due to space considerations, the square root would be the most likely candidate as this takes up more of the execution time than the exponential function.

ASIP

6 ASIP Design Route

6.1 Introduction

The ASIP design route intends to produce a working embedded processor to execute on the FPGA, with an instruction set tailored towards the LAME and PGP integrated application.  Earlier on in the project, the processor model was outlined.  A MIPS-based instruction-set was chosen due to the availability of a MIPS compiler for GCC, as well as the team’s familiarity with MIPS assembly code.  It was also decided that Harvard architecture should be implemented to exploit the multiple memory banks on the FPGA.

A major part of this design route is modification of GCC to produce machine code for execution by the ASIP.  This is fully detailed in a separate chapter.

6.2 Analysis

It was originally intended to create the ASIP prototype in C, and then port it to Handel-C once it had been verified.  This was to be done either from scratch, or by modifying the source code from SPIM, the generic MIPS simulator.

6.3 SPIM [
]
SPIM is a cycle-correct simulator for MIPS R2000 and R3000 assembly language programs, which provides a simple debugging interface and a limited run-time support system.  It implements almost the entire MIPS-32 instruction-set, excepting only some of the more complex floating point comparisons.

One of the advantages of basing our processor on SPIM included the fact that full source code is available, the model is cycle-correct (it can understand delayed branches and jumps produced when the assembly code is optimised and assembled) plus it comes with a torture-test for verifying ports to new target architectures.  The also exist some drawbacks with using SPIM as a basis for the processor, the most significant being the complexity.  As SPIM implements nearly all of the MIPS-32 instruction-set, it is far more complex than is required by this project, and it would take the team a significant time to familiarise themselves with the SPIM source code.  Furthermore, for the team to fully understand the ASIP architecture it is more sensible to implement the prototype from scratch using a limited instruction-set to verify the data-path and control flow, before incrementally adding necessary instructions.  It was therefore decided to use SPIM only for the purposes of testing the output of GCC, and not as a basis for the ASIP.

6.4 Prototyping in C and Handel-C

It was reasoned that the ASIP should be prototyped in C due to the team’s extensive experience with the C language, as compared to its limited knowledge of Handel-C.  Initially, a grossly simplified processor model was produced in C, which read instructions from a generic assembly code file and executed them sequentially.  This gave members of the team an understanding of the execution cycles of a processor, although was not useful in demonstrating instruction decoding, or any form of parallelism.

At this point it was decided to move to Handel-C to complete the prototype.  The Handel-C language provides support for parallelism, as well as a superior collection of bit selection operators.  This makes instruction decoding more simplistic, and allows certain parts of the code to occur concurrently (for example, fetch and execute cycles). 

6.5 Detailed Design
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Figure 6: Detailed Schematic of ASIP showing Data and Control Paths

6.6 Processor Core

The processor core has two main components, both executing in parallel, thus achieving a simple two-stage pipeline as shown in Figure 6.  The two stages use intermediate registers to communicate – the Program Counter and the Instruction Register.  To ensure the integrity of these shared memory locations, each stage of the pipeline guarantees it will only write to the locations at specific points.  It is possible to determine in Handel-C exactly how long each expression will take to execute, expression evaluation taking no time and the assignment operator taking one clock tick.  If the “execute” stage only reads from the Instruction Register on tick one, and the “fetch” stage only writes to it on tick three, integrity can be maintained.  Both stages synchronise at the end of the cycle, and therefore data integrity is maintained.  This is demonstrated in Figure 7.
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Figure 7: Diagram Showing Interactions with Instruction Register

The ASIP uses Harvard architecture, which means that the data and program buses are separate.  This is achieved by placing instructions in one FPGA memory bank, and program data (i.e. the stack and the heap) in another.  The further memory banks will be used by the System and I/O functions to communicate shared data between the FPGA and the host program.

6.7 Host Program

A host program is required for the ASIP, to perform a number of key functions including the following.

6.7.1 Initialising the FPGA

On compilation of the Handel-C ASIP, a “bit-file” is generated which must be loaded onto the FPGA to execute.  The RC1000 support software provides a library and program headers to allow this to be done in the host program.

6.7.2 Loading the Program

The application to be executed by the ASIP must be loaded from disk by the host program and placed in the FPGA memory bank dedicated to program data.  The instructions will be read sequentially as 32-bit words, and placed in consecutive positions on the FPGA.  The Gnu tool-chain produces ELF binaries when it compiles programs for the MIPS, and so it is hoped these can be read directly by the host program. 

6.7.3 Loading the Data

Although most of the data will come from file I/O reads, there is usually some data embedded within the executable file.  The host program will read this data from the executable file and place it in the relevant databank on the FPGA.

6.7.4 Handling System Calls

As all of the system and I/O cannot be directly handled by the ASIP, they must be passed to the host program using a pre-defined I/O protocol, or embedded as assembly language in the source code and implemented as additional operations by the ASIP.  In the former case, the variables and data being passed to the system call must be passed to the host computer via the FPGA board memory banks, at which point the ASIP will suspend until the I/O call has been completed by the host program.  Once the call has been completed, control will pass back to the ASIP to continue execution.

In the case of a functional unit to be added to the FPGA, for instance, the square root function, the new operation will be embedded as assembly code in the C source code.  When the ASIP reaches this new instruction, it will execute a special function on the FPGA.  Although this will mean a delay in the ASIP execution cycle, it will be significantly more efficient than executing the square root function in software on the host computer.

6.8 Implementation

The ASIP is being implemented using an iterative model.  Starting with very simple programs, the main framework of the code has been implemented.  The programs are then being gradually increased in complexity (for example, moving from addition and subtraction to multiplication and division, programs with recursive function calls, etc…).  At each stage, the program is run systematically until an unrecognised op-code is found.  The operation is then implemented, and the program restarted.  Execution of the program terminates when a “jump register” operation changes the program counter to zero (this happens because the return address is initially zero on entry of the “main” function).

With a working ASIP framework, the processor is being ported from a Handel-C simulation to a Handel-C hardware implementation.  With intelligent use of pre-processor directives, the functionality of the simulator is maintained whilst the hardware version is developed – this means op-codes can be added and debugged later without the need for FPGA execution.  The majority of the porting process for the ASIP itself consists of adjusting memory mappings to suit the FPGA board API.  Furthermore, a complexity not encountered in simulation mode is the development of the host program alongside the ASIP.  It is envisaged that once the ASIP has been ported to hardware and tested with the simple programs used to test the simulation version, the instruction set will be incrementally expanded and tested as required by the application.

System calls, which appear in the source code shared header file, will be implemented depending on their specific type.  For example, memory functions such as “memcpy” or “malloc” will be implemented as Handel-C functions where possible, as both the ASIP and the host computer are able to access the memory banks, but the host computer would incur a greater communication overhead.  Mathematical functions such as “sqrt” can be implemented on the ASIP as an additional op-code, and are expected to give a slight performance improvement over the original system call.  I/O functions such as “fopen” and “fprintf” will pass control to the host program by embedding “syscall” operations as assembly code in the C function.

6.9 Testing

Due to the complexity of the ASIP, testing must occur in a methodical, controlled, and modular way.  Initial verification of the control structures took place in the Handel-C simulation stage, using the Handel-C debugger and a simple program, which had been manually verified.  This stage of testing was very time consuming, and involved stepping through the code one-clock tick at a time.  Many initial bugs were discovered and corrected in this way, most of them relating to memory addressing.

Every addition to the processor’s instruction set must be tested individually for correctness, particularly to highlight problems with coercion between signed and unsigned integer types.  This is why the Handel-C simulation is still useful, as compilation for the FPGA takes a great deal of time.

Finally, each system call implemented on, or on behalf of the ASIP must be extensively tested for correctness.  The strategy for these will involve the ASIP executing a simple section of code, and the results compared with the expected results.  This must be repeated for several test data.

GCC and the Gnu Tool-chain

6.10 Introduction

GCC is the Gnu Compiler Collection, a re-targetable compiler with front-ends for many programming languages, and back-ends for many machine architectures.  Along with its companion programs (collectively known as “binutils”), it can produce executable code for many types of computer.  There are many existing ports of GCC and binutils, as well as documentation on how to generate a new machine description.  The team decided to use GCC under Cygwin, which is a UNIX-like interface to Windows.  This enables easy switching between the tasks of compilation, execution, etc.

6.11 The Tool-chain
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The Gnu tool-chain consists of three distinct phases.  The first of these phases is compilation, and is performed by GCC itself.  This takes a program from any one of the supported languages and produces an assembly language program for the target architecture.

Subsequent stages are all carried out by utilities in the “binutils” collection, although these are all called from GCC, giving the impression of a single stage of compilation.  The next stage is assembly, and is carried out by the “gas”, the Gnu assembler.  This optimises and assembles the assembly code, producing object files.  Object files contain the raw machine code for the target machine, however they do not contain entry points or the fundamental data constructors required for executables.

Finally, the Gnu linker, “gld” takes one or more object files, analyses the dependencies and links them together with the machine-dependent standard libraries for the desired architecture.  The output of this phase is the executable file.

6.12 Targeting a Specific Architecture

For the purposes of this project, it was decided to initially take an existing machine description and make modifications to that, rather than write a complete machine description from scratch.  The MIPS architecture was chosen as a starting point, partly due to the availability of a GCC port, as well as the ease of implementing an ASIP based on MIPS.  

When building a cross-compiler, GCC needs to be configured for the required target.  This involves running a configuration script provided with the GCC source code, and providing it with certain options.  For example, if the host system does not have a cross-assembler and linker, the compiler must be told to use the Gnu assembler and linker.  Much of the required information is inferred by the script.  Modification of the target architecture is achieved through what are known as RTL or “register transfer language” files.  These provide the compiler with a description of the interactions between the registers of the machine, along with translations between high-level language statements and assembly code.  Initially, no modifications were necessary to the compiler, as it was important to verify its output before making any changes.  In this way we could be sure of whether we were introducing errors.

Before GCC can be compiled, binutils needs to be compiled.  This is configured in much the same way as GCC, and compiles without difficulty.  The programs are all given the prefix “mips-” to help the compiler differentiate from the system tools and the cross-compiler tools.

The compilation process of GCC consists of several stages.  Firstly, as there are sections of GCC that can only be built by GCC, a “boot-strap” compiler is built.  This generates x86 code for the host architecture, not the target architecture.  The boot-strap compiler then goes on to compile the main compiler.  This lengthy process appears to go without difficulty, and results in an executable compiler being produced.  However, the third stage of GCC compilation fails, with the message that the compiler is incapable of producing executable files.  It was discovered that this problem lies not in the actual compilation of GCC, or its correctness, but in the absence of native MIPS libraries with which to link.  The failure is merely a problem with the testing of the compiler, and not with the building of the compiler.

6.13 Testing and Verification

Testing of GCC itself was relatively straightforward, although exhaustive testing is very time consuming.  As no modifications were made to the GCC source code as yet, the initial step taken was to search on the Internet for any known problems with this particular version of GCC (version 3.0.3).  After finding no problems, some simple programs were compiled using the “-S” switch, which produces assembly code, but does not call the assembler or linker.  The results of this were good, after verification both manually and with SPIM.

6.14 Libraries

Problems were encountered at the linking stage of compilation, which failed with an error referring to a missing library, “crt0.o”.  This is a C runtime library, which in particular is used to initialise the data segments of the executables.  Without this library, the compilation would not complete.  Extensive Internet searches showed that GCC could be called with the switch “-nostdlib”, a switch that causes the standard C runtime libraries not to be included in the linking process.  This switch removed most of the errors, leaving just one – an undefined reference to “__main”.  Closer inspection of the intermediate assembly code revealed an instruction linking the function “__main”, and removing this instruction caused the error to cease.  Research into “__main” has shown that it is an initialisation routine, and does not affect the functionality of the assembly code for the most part.

It is envisaged that partial functionality of the libraries will be achieved at a later stage in the project by generating simplified versions in C.  In particular, constructors and the very low-level system calls may be implemented in the libraries, but in a way which fits closely with the chosen ASIP communication protocol.

6.15 Verifying Executables

Once the initial library problems had been resolved, executables could be produced in ELF format.  However, with little knowledge of this format it was difficult to both verify and use the executable.  The solution lay in a utility that is part of “binutils”, called “objdump”.  This utility reads ELF files and produces formatted outputs of various parts of the binary, depending on the command-line switches specified.  Most useful was the “-D” switch, which disassembles the machine code, showing the corresponding MIPS instruction mnemonic adjacently.  This was useful for both manually verifying the code, and also for prototyping the ASIP (the machine code could be pasted into a file for reading by a Handel-C channel).  Completeness dictates that the host program for the ASIP should be able to directly read the executable file in its native format, thus skipping this intermediate stage.  This is discussed further in the ASIP design chapter.

6.16 Conclusion

GCC and the Gnu tool-chain were initially chosen due to their flexibility and portability over other existing compilers.  There have been some problems with the use of GCC, both with compiling and with using the compiler; however these have been issues relating more to the target architecture than the compiler itself, which has been verified as producing correct code.  Overall, the flexibility of GCC has proved useful to the project, as source code in many different languages could be directly targeted at the ASIP.

Partitioning

7 Hardware/Software Partitioning Route

Hardware/Software partitioning (HSP) is the process of analysing a piece of software and moving sections onto hardware to provide an increase in the speed of execution.  HSP is split into three tasks – identifying candidates, porting the code to hardware and implementing communication links between the host program and the FPGA program.

7.1 Candidate Choosing[
]
A candidate is a function in the program source code that suitable to be moved to the FPGA.  There are a number of factors to consider when deciding which functions will be candidates, such as how long the code takes to execute, how often it is used, communication time between the host and the FPGA, etc.  There has been previous research into methods of choosing candidates.  In [
] Olukotun, et al split the functions into three groups of candidates according to three rules. If a function satisfies one of the rules then the function will go into that group:

	(Tsw)
	- Time for software execution of code block.

	(Thw)
	- Time for hardware execution of code block.

	(Tcom)
	- Time for communication between HW and SW.




	Rule 1: (Tcom) > (Tsw)

	Rule 2: (Tsw) > (Thw) + (Tcom)

	Rule 3: (Thw) + (Tcom) > (Tsw) > (Tcom)


Rule 1:

States that if the communications between the host and the FPGA take longer than the function takes to execute in software then the function is not a candidate.  If the communication time is greater than software execution time then no matter how fast the hardware version takes to execute it will not be able to provide any program speedup.

Rule 2:

States that if the software execution time is greater than the hardware execution time and communications time together then it is a candidate.  These functions will always offer program speed up, and so they are “strong candidates”.

Rules 3:

States that if the hardware execution time and communications time together is greater than the software execution time, which in turn is greater than the communications time alone then the block may be suitable for implementation in hardware.  In other words, for functions suitable for this group, the hardware execution time is less than the software execution time, but the communications time makes implementation in hardware take longer to execute.  In addition, the communications time must be less than the software execution time.  If this was not the case then there would be no point in moving the function as it would never offer any speedup.  This third group is necessary because communications time cannot be accurately predicted.  The host program may have to wait for a system bus, the CPU, system interrupts, etc, non of which can be predicted.  Functions in this group may or may not offer speedup, but they are more likely to than any functions in group 1.  This group of functions should only be considered for hardware implementation if all the suitable functions from group 2 have been implemented and there is space on the FPGA for more functions.

In [
] Jantsch, et al, took a slightly different approach.  Their rules are based more on the software as opposed to the hardware.  They look at the source code and decide from there which functions are candidates and which ones are not.  Their rule set is:

	1 - Iff it doesn't have any floating point or I/O calls

	     AND

	2 - if it is an inner loop or leaf function, or

	3 - it includes only loops and calls to functions that are candidates themselves.


Rule 1:

Immediately discounts functions that have to make I/O calls.  The FPGA cannot make system I/O calls directly.  Any function that does not satisfy this rule can not be a candidate.  Any functions that do must also satisfy either rule 2 or rule 3.

Rule 2:

Refers to the call depth of the function.  If a function calls another function then the called function is said to be a child function of the calling function.  A child function that makes no function calls of its own is said to be a leaf function.  Leaf functions are well suited for implementation to hardware as function calls made back to software from the FPGA are temporally expensive.  Rule 2 also refers to “inner loops”.  This means that if there is a function that has a computationally intensive loop in it then that loop is well suited for implementation in hardware.  However, if the loop is nested then only the innermost loop should be implemented.  Loops can be implemented in hardware by making them into a new function and calling that function in place of the loop.

Rule 3:

Allows functions that are not leaf functions to be implemented in hardware.  As a function call from the FPGA back to software is not feasible a non-leaf function can only be implemented if the function(s) it calls are also going to be implemented on the FPGA.

Then the block choosing is done.  They appear to have an algorithm to do this automatically, however:

All blocks are placed in software and (those from groups 2 and 3) moved one at a time into hardware.  The one that gave the biggest speedup is left there and the process repeats until there is no more space on the FPGA.

The second stage involves moving one of the blocks from group 2 back into software and trying all the remaining ones from group 3, and repeating with the new fastest partition until no block can be removed without detrimental effect on execution time.

Taking this research into account our approach is a combination of these two methods.  Our rules split the functions into unlikely candidates, and candidates of various “strength”.  A definite candidate is one that is expected to offer a significant speed up over software only execution.  Definite candidates will be implemented in hardware.  Strong candidates and weak candidates are both functions that call other functions.  A strong candidate is expected to have a small hardware implementation space whereas a weak candidate is expected to need a large hardware implementation space.  The suitability for implementation in hardware is based on the amount of time spent executing that function and the type of function (parent, child, leaf).

Our rule set is: 

1) Candidate functions with I/O calls are unlikely candidates.  Rule 6 does not apply.

2) Definite candidates must be leaf functions.

      2a) Definite candidates will be the most used functions (either by number of calls or percentage execution time used).  Other leaf functions will be strong candidates.

3) Functions with one child function call are strong candidates.

4) Functions with two or three child function calls are weak candidates.

5) All other functions are unlikely candidates.

6) Functions may move one group stronger or one group weaker according to how often they are used (either, via the number of calls or percentage execution time used).

These rules are applied to each function in turn.  The candidate group for the function is chosen by the first rule that they satisfy.  Leaf functions are grouped by rules 2 and 2a, all others by rules 3 to 5.  Rule 6 allows slight bending of these rules to cater for functions that show good speed up potential, but otherwise might not be considered.

If a function satisfies:

Rule 1: it is an unlikely candidate.

Rule 2: it is tested with 2a.  Success gives a definite candidate. Failure gives a strong candidate.

Rule 3: it is a strong candidate.

Rule 4: it is a weak candidate.

Rule 5: it is an unlikely candidate.

7.2 Migration To Hardware

Once the functions have been grouped the migration can begin.  Migration involves taking a function that is suitable to be implemented on the FPGA, porting the source code to Handel-C, writing code to run on the host CPU to manage the FPGA and communication links between the two.

Source code porting will be tackled with a set approach:

1) The inputs and outputs of a function will be identified, along with any variable and return types used in the function.

2) The code is then looked at in small sections and pseudo-coded to aid understanding of the aims of the function.

3) The code is then implemented in Handel-C and tested with a small host program that will feed given inputs to the (hardware) function and display the results.

4) These results are then compared with expected results to ensure the function has been ported correctly.

5) Finally, a short amount of time will be spent to look for any optimisation opportunities in the code, such as areas of code that can run in parallel.  Optimisation will only attempt to use Handel-C specific instructions such as the par{} construct.  It will not try to optimise algorithms, etc.

Following this approach will produce a set of single functions, implemented in hardware.  From this set, the FPGA logic can be constructed.  The definite functions will be placed first, in order of how much execution time the software function took.  If there is any space left, then strong candidates will be chosen, then weak.

We have the option to follow Olukoton, et al, in trying different configurations of the FPGA to find the best speed up.  However, they had an algorithm to automate and facilitate the process.  A better approach for DEEP3 would be to measure the speed up gained by each function on its own, construct a “league table” of the results and choose the configuration from there.

Communication between the FPGA and the host program running on the CPU can be done through one of three methods.  Single bit, single byte or DMA date transfers.

It is anticipated that the DMA transfers will be needed.  The primary definite candidate from the PGP section of the program code is the ideaCipher () function (this function does the actual encryption), and it is expected similar encoding functions will be moved to hardware from the LAME section of the program code.  As such the entire .WAV file will go through the encoding process meaning tens of megabytes of data will have to be passed to the FPGA for processing.  The .MP3 file is another 4-5 megabytes of data to be passed through the FPGA.  This will be done through DMA transfers of arrays.  DMA transfers need to be set up and controlled using function calls to request and release the memory banks.  One memory bank can be written to while another is read.

Communications that are of up-to a byte in size can be handled by sending a “status” byte to the FPGA using given functions.  This would be much simpler and quicker than a DMA transfer.

It is not anticipated to have the host CPU and FPGA running in parallel.  Execution is to run on the host CPU until a hardware-implemented function is encountered where it will switch to the FPGA and the host CPU will wait.  When the FPGA has finished execution control will pass back to the host CPU and continue through the program.

Hardware Design

8 Custom Hardware Design

8.1 Introduction

The DEEP3 project’s aim is to investigate hardware/ software co-design methods. It is usual in such methods for the developers to design custom hardware either as a means of interfacing the system to some external function, or as a means of enhancing system performance. This section describes the design of the custom hardware to inter-connect audio speakers to the re-configurable platform for direct audio playback.

8.2 High-Level Design

Once the sound has been decrypted and decoded to a series of PCM samples, it has to be converted from this digital form to an analogue signal that can be interpreted by the speakers. Passive or amplified speakers may be used during playback. Passive speakers are typically used in combination with an amplifier else, they produce minimal volume. Amplified speakers have an internal amplifier, usually integrated into one or more of the speakers. The MPEG Audio Layer 1 standard supports stereo, dual-monophonic and mono sound. Mono only requires a single speaker while stereo and dual-monophonic sound each requires two speakers, one for each encoded channel. In order to support all modes of operation there need to be at least two speakers. The final component of the system is a power supply. The speakers may have their own supply direct from the mains. The rest of the system will have to be powered directly from the FPGA. Figure 8 shows a high-level model of the audio interfacing system.
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Figure 8: High Level Model of Playback System

8.3 Digital to Audio Conversion

The simplest method for converting of the digital samples to an analogue signal is to use a digital to analogue converter (DAC) chip. A quick check for Audio DAC chips at a local electronics supplier (Farnell [
]) revealed two dual audio DACs (DAC chips with support for two input and two output channels on a single chip). Both devices are manufactured by Analog Devices®, each having dual serial input, dual serial output, and a single +5 V Supply. Both operate at 8 x over-sampling frequency and are packaged as 16-pin plastic DIP or SOIC. 

Digital to analogue over-sampling is a process whereby and additional values are “interpolated” between the two existing samples. N x over-sampling playback system inserts (N-1) additional values are inserted between the two original samples [28]. Over-sampling is used to remove artefacts.  Another benefit of over-sampling is the reduction of quantisation noise. The interpolation might be performed by a special algorithm, such as the Smith-Gossett [29] algorithm used in some Digital Signal Processors, or be just simple linear, cubic or some n-order polynomial interpolative algorithm.

A dual audio DAC is preferred over two single DACs, as the cost of two single DACs is usually greater than the cost of a single dual audio DAC. Another reason for the choice was the fact that the dual DAC is a complete system on a chip. Systems on a single integrated circuit (IC) tend to consume less power than systems on multiple chips, as there are fewer line drivers. Systems on a chip also tend to be more reliable as there are fewer solder points that could crack during handling and general use.

The major difference between the two dual DACs, sold at Farnell, is the number of bits in a sample. The AD1866 is a 16-bit DAC while the AD1868 is an 18-bit DAC. As only 16-bit resolution is required to meet the minimum criteria for CD quality sound, the AD1866 was selected. Another reason for selecting this chip was that the MP3 encoder/ decoder that the system is based on only supports 16-bit output. “A versatile digital interface allows the AD1866 to be directly connected to all digital filter chips. Fast CMOS logic elements allow for an input clock rate of up to 16 MHz. This allows for operation at 2x, 4x, 8x, or 16x the sampling frequency [of 44.1 kHz] for each channel”[
]. The maximum clock rate of the AD1866 is specified to be at least 13.5 MHz.
There are two points where the DAC might be connected to the FPGA board, the 50-pin Aux I/O header and one of the two PMC interfaces. The 50-pin unassigned I/O header is the more suitable as it is designed for custom interfaces unlike the PMC points which are really for data conforming to the PCI standard. Table 3 describes each of the AD1866’s 16-pins. Figure 9 shows how the DAC might be connected. 

	Pin #
	Pin Name
	Description

	1
	VL
	Digital Supply (+5V)

	2
	LL
	Left Channel Latch Enable Pin

	3
	DL
	Left Channel Data Input Pin

	4
	CLK
	Clock Input Pin

	5
	DR
	Right Channel Data Input Pin

	6
	LR
	Right Channel Latch Enable Pin

	7
	DGND
	Digital Common Pin

	8
	VBR
	Right Channel Bias Pin

	9
	VS
	Analogue Supply (+5 V)

	10
	VOR
	Right Channel Output Pin

	11
	NRR
	Right Channel Noise Reduction Pin

	12
	AGND
	Analogue Common Pin

	13
	NRL
	Left Channel Noise Reduction Pin

	14
	VOL
	Left Channel Output Pin

	15
	VS
	Analogue Supply (+5 V)

	16
	VBL
	Left Channel Bias Pin


Table 3: Pin Descriptions for AD1866 (After [27])
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Figure 9: Interfacing the AD1866 to the 50-pin AUX (After [27])

The circuit is essentially the DAC channel outputs connected to RC low-pass (anti-alias) filters to filter out the frequencies above upper frequency limit of humans (20 kHz). It is usual to filter the output before amplification or have an integrated filter/ amplifier after the DAC stage. 

Figure 10 shows how the various control signals must be operated in order to produce an output signal on either output channel. The input data bits on data left (DL) and data right (DR) are serially clocked into input registers on the rising edge of CLK. The respective DAC outputs are updated by the falling edges of LL and LR after 16-bits of data has been clocked into the serial registers. The data is transmitted to the AD1866 in a bit-stream composed of 16-bit words in twos complement form with the most significant bit first. The output voltage produced is (1 V at load currents up to (1 mA. VBL and VBR both provide a dc reference voltage equal to the center of the output voltage swing (about +2.5V).
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Figure 10: AD1866 Control Signals (After [27])

According the datasheet for the DAC [27], the minimum voltage that will be recognised as a logic high level on one of the input pins is 2.4V. The maximum voltage for a digital low on one of these inputs is 0.8V. The power supply pins VL and VS are both specified to work between 4.75V and 5.25V, though 5V is typical. These supplies may operate at voltages as low as 3.5V. The power supply must therefore supply a voltage of at least 4.75V in order to meet the specified voltage needed by the DAC. How LL, DL, CLK, DR, LR, DGND and all +5V and ground supplies are connected to the FPGA will be discussed in the power supply design section. The channel outputs could either be connected to a single 3-pole jack socket, separately to two 2-pole jack sockets, or to the speakers directly.

The frequency of the input clock is given by the equation:

Frequency = sampling frequency * number of bits per sample * over-sampling rate

The sampling frequency is the value in the MP3 header.

8.4 Amplifier and Speaker

The amplifier converts the analogue signal from the DAC to the chosen user sound “loudness” value, which must be between the positive and negative supply voltage rails of the speakers. Two 5-10 Watt (W) Root Mean Squared (RMS) passive speakers will produce a discrete sound without amplification. Two 20-50 W RMS active speakers will produce a very loud sound. As stated previously the amplifier may be part of the speaker unit(s) or may be a stand-alone unit. We have chosen active/amplified speakers for several reasons. First, it simplifies the custom hardware design by having a prefabricated speaker and amplifier unit. This also reduces risks and has the advantage of producing a higher quality product than might be possible if both the speakers and amplifiers are built from components of the shelf. Finally, it enables greater reuse. The same speakers that are used to play sound via the sound card in the initial project stages can be reused in this later stage leading to lower development costs.

8.5 Power Supply

Ultimately, the filter and the digital to analogue converter must be connected to the FPGA in order to convert the samples to audio output. The RC1000-PP from Celoxica supports many input/output standards. The target architecture combines the RC1000-PP with a Xilinx® Virtex™ XCV1000 FPGA chip. This chip only supports a subset of the I/O standards. Table 4 shows the standards supported by the XCV1000 .

	I/O Standard ([
], [
])
	Performance Target
	Typical Application

	LVTTL (3.3V)
	250 MHz
	General Purpose

	LVCMOS (2.5V)
	250 MHz
	General Purpose

	PCI 33MHz (3.3V, 5V)
	33 MHz
	PC & Embedded

	PCI 66MHz (3.3V)
	66 MHz
	PC & Embedded

	GTL (1.5V, 2.5V, 3.3V)
	100 MHz
	Backplane

	GTL+ (1.5V, 2.5V, 3.3V)
	200 MHz
	Backplane

	HSTL Class I (1.5V)
	250 MHz
	Memory & Switch Fabric

	HSTL Class III (1.5V)
	250 MHz
	Memory & Switch Fabric

	HSTL Class IV (1.5V)
	250 MHz
	Memory & Switch Fabric

	SSTL2 Class I & II (2.5V)
	200 MHz
	DDR 1 SDRAM

	SSTL3 Class I & II (3.3V)
	166 MHz
	SDRAM

	CTT (3.3V)
	250 MHz
	Backplane

	AGP 1x (3.3V)
	66 MHz
	3-D Graphics

	AGP 2x (3.3V)
	133 MHz
	3-D Graphics


Table 4: I/O Standards Supported (After [30])

See [
]

	Acronym
	Long Form

	LVTTL
	Low Voltage TTL

	LVCMOS
	Low Voltage CMOS

	PCI
	Peripheral Component Interconnect

	GTL
	Gunning Transceiver Logic Terminated

	GTL+
	Gunning Transceiver Logic Plus

	HSTL
	High-speed Transceiver Logic

	SSTL2
	Stub Series Terminated Logic for 2.5V

	SSTL3
	Stub Series Terminated Logic for 3.3V

	CTT
	Centre Tap Terminated

	AGP(1x, 2x)
	Advanced Graphics Port


Table 5: I/O Standards Acronyms Expanded

For input signals into the clock pin and data input pins of the DAC, the FPGA I/O standard must support switching at speeds up 13.5MHz with a voltage greater than 2.4V. The positive power supply pins require an I/O standard that can drive a CMOS or TTL input at a voltage to at least 4.75V. 

All of the 3.3V and 5.0V standards listed in Table 4 and expanded in Table 5 are appropriate for the input signals to the DAC both in terms of voltage level and switching frequency. The 2.5V standards could be used but they allow only a small deviation in the signal level and so are not highly favoured. The I/O standard is being applied to an embedded general-purpose design and so this further narrows the possible I/O standards to only one possibility, LVTTL. The DAC input pins will therefore be all connected directly to the FPGA via a LVTTL interface. This is possible because the digital input pins of the AD1866 are TTL compatible.

Only PCI meets the criteria for at least 4.75V at the positive power supply pins of the DAC but LVTTL at 3.3V must be used because of a design decision based on the typical application uses of the various I/O standards. It was therefore necessary to design an interface to convert these low voltages to over 4.75V DC. A DC-DC converter was chosen for this interface. 

The part used had to support inputs from 2.5V to 3.3V. It also had to be low cost. The MAX619 [
] step-up charge-pump DC-DC converter from MAXIM is such a chip. It converts voltages from 2.0V to 3.6V to an output between 4.8V and 5.2V with minimal interfacing components (only four external capacitors). Not only is the chip inexpensive (£2.32 from Farnell), the extra components required are also very low cost. The chip also features a shutdown pin (SHDN) that places the device in a low-power shutdown mode and zeros the output voltage, effectively turning off any connected circuitry. The output current supply is more than adequate for the application. Figure 11 shows a schematic of the power supply interface. The input signal on the IN pin is direct from the FPGA and so is the SHDN pin’s signal. The pins requiring 5.0V in the filter and DAC are connected to the OUT pin of the MAX619. The negative power supply rail of all chips is direct from the FPGA using a LVTTL 3.3V interface.

[image: image29.png]1z, 022
;

Ma1a
Input2vto 36V o o
" SHON
‘owore
100 T 013
—
100 T 015
o 1
Outputsv, 20ma o py

11, 0220
G





Figure 11: Power Supply Design

8.6 Conclusion

In this section a high level and a detailed schematic design level of the custom audio interface were described. The power supply to the filter and the digital to analogue converter are from the FPGA via a DC-DC step-up converter. The clock signal, left and right channel data, and left and right channel enable signals of the DAC are direct from LVTTL 3.3V configured pins of the 50 pin AUX header of the FPGA. Some processing is required before data is sent to either channel of the DAC. This is essentially an interpolation algorithm that has yet to be specified. The system reuses the speakers from earlier stages in the project’s lifecycle in order to reduce cost and simplify design. These speakers have an internal amplifier for volume. The speakers connect to the filter via a single 3-pole audio socket. Table 6 shows the major components used in the design and the cost of each of these components.

	Part Description
	Manufacturer
	Part Code
	Supplier
	Supplier Code
	Price (£)

	Dual Op Amp
	EBV ELEKTRONIK 
	LM358D
	Farnell
	300-3681
	0.27

	DC-DC converter
	MAXIM
	MAX619
	Farnell
	702-614
	2.32

	Dual Audio DAC
	Analog Devices
	AD1866
	Farnell
	595-020
	19.03


Table 6 : Major Parts List

Custom Hardware Test Plan

8.7 Introduction

System designs always need to be adequately tested for functional correctness and adherence to non-functional requirements. In this section, the method by which the custom hardware will be tested is described.

8.8 Tests

The design needs to be tested for its frequency response, amplitude step response, for the correct signals on each input and output pin, and for short circuits. Frequency response tests verify the implementation of the audio filters. The step response is to prove that for all possible serially inputted voltage signal into the DAC, the analogue output is of the correct signal level before and after filtering, within expected error bands. Other tests are there to detect spurious signals that may cause unexpected results in the other tests. The tests will be conducted in the following order: (1) Test for short circuits, (2) Tests for correct signal levels, (3) frequency response and (4) step response.

8.8.1 Test for short circuits

Shorts can be detected first by physical inspection of each track and solder joint. Once all obvious shorts have been identified using the first method, they should be resolved. Next, using a multi-meter with a short circuit detector, each solder point should be tested for short circuits. Any faulty points found should be remedied. 

8.8.2 Tests for correct signal levels

A voltmeter will be used to confirm that each signal pin is at the expected voltage. 

8.8.3 Frequency Response Tests

As it would be too time consuming to test the response of the system to every frequency in the human auditory range, a subset of frequencies must be studied. It has been decided that frequencies should be tested on a logarithmic scale. The following output frequencies will be tested: 20 Hz, 30Hz, 40Hz, 50Hz, 60Hz, 70Hz, 80Hz, 90Hz, 100Hz, 200Hz, 300Hz, 400Hz, 500Hz, 600Hz, 700Hz, 800Hz, 900Hz, 1000Hz, 2.0kHz, 3.0kHz, 4.0kHz, 5.0kHz, 6.0kHz, 7.0kHz, 8.0kHz, 9.0kHz, 10.0kHz, 20.0kHz and 30.0kHz. 

The simplest way to verify the frequencies is to generate square waves at the frequency under investigation on both audio channels. The frequency of the clock signal into the DAC should be the over-sampling rate times the frequency of the signal at the output on either channel before filtering. If there is any difference between these two signals first check that the clock signal is correct for the test involved. If it is correct, re-check the signal levels on the various DAC I/O pins. The square waves should all have a peak to peak amplitude 2.0V (full range of values supported by DAC output). The input signals to produce the required output may be generated by a logic analyser or a test program executing on the FPGA. An oscilloscope may be used to analyse the output signals.

All frequencies after filtering should be the same as the value before the filter except for the signal at 30.0kHz.

8.8.4 Amplitude Response Tests

Like the frequency response tests, the amplitude response tests cannot be exhaustive. Twenty-five equally spaced amplitudes spanning the full range of output voltage levels of the DAC will be considered. Each amplitude will be tested with a sine wave output signal at a frequency of 1kHz. Again the input signals to produce the required output may be generated by a logic analyser or a test program executing on the FPGA. The output signals may be analysed using an oscilloscope.

8.9 Conclusion

In conclusion the custom hardware will be validated and verified by a number of means including physical inspection and testing. The number of possible input frequencies and amplitudes prevents the system from being exhaustively tested in the allocated time. The system will be tested using a subset of these frequencies and amplitudes.

APPENDIX A: PGP and LAME integration

System calls replaced in PGP and LAME source code

Every occurrence of a system call in the source code has been replaced with an affix fpga_

	Return
	Function

	void
	fpga_assert(exp);

	int
	fpga_setmode(int file_no, int mode);

	void
	fpga_abort();

	int
	fpga_abs(int num);

	double
	fpga_atof(const char *str);

	int
	fpga_atoi(const char *str);

	void
	*fpga_calloc(size_t num, size_t size);

	clock_t
	fpga_clock();

	double
	fpga_cos(double num);

	double
	fpga_difftime(time_t time2, time_t time1);

	void
	fpga_exit(int exit_code);

	double
	fpga_exp(double arg);

	double
	fpga_fabs(double num);

	int
	fpga_fclose(FILE *stream);

	int
	fpga_fflush(FILE *stream);

	double
	fpga_floor(double num);

	FILE 
	*fpga_fopen(const char *fname, const char *mode);

	int
	fpga_fprintf(FILE *stream, const char *format,...);

	int
	fpga_vfprintf(FILE *stream, const char *format, va_list args);

	size_t
	fpga_fread(void *buf, size_t size, size_t count, FILE *stream);

	void
	fpga_free(void *ptr);

	double
	fpga_frexp(double num, int *exp);

	int
	fpga_fseek(FILE *stream, long offset, int origin);

	long
	fpga_ftell(FILE *stream);

	size_t
	fpga_fwrite(const void *buf, size_t size, size_t count, FILE *stream);

	double
	fpga_ldexp(double num, int exp);

	double
	fpga_log(double num);

	double
	fpga_log10(double num);

	void
	*fpga_malloc(size_t size);

	void
	*fpga_memcpy(void *to, const void *from, size_t count);

	void
	*fpga_memset(void *buf, int ch, size_t count);

	double
	fpga_pow(double base, double exp);

	void
	*fpga_realloc(void *ptr, size_t size);

	double
	fpga_sin(double arg);

	double
	fpga_sqrt(double num);

	int
	fpga_stat(const char* file_name, struct stat* status);

	int
	fpga_strcmp(const char *str1, const char *str2);

	char
	*fpga_strcpy(char *str1, const char *str2);

	size_t
	fpga_strlen(const char *str1);

	char
	*fpga_strncat(char *str1, const char *str2, size_t count);

	char
	*fpga_strncpy(char *str1, const char *str2, size_t count);

	long
	fpga_strtol(const char *start, char **end, int radix);

	double
	fpga_tan(double arg);

	double
	fpga_atan2(double arg1, double arg2);

	time_t
	fpga_time(time_t *current_time);

	int
	fpga_fputc(int num, FILE *stream);

	int
	fpga_fputs(const char* text, FILE *stream);

	int
	fpga_getc(FILE *stream);

	FILE 
	*fpga_stderr(void);

	FILE 
	*fpga_stdout(void);

	FILE 
	*fpga_stdin(void);

	int
	fpga_fileno(FILE *stream);

	int
	fpga_sprintf(char *buf, const char *format,...);

	int
	fpga_printf(const char *format,...);

	double
	fpga_atan(double arg);

	int
	fpga__setmode(int file_no, int mode);

	void
	fpga_srand(unsigned int seed);

	int
	fpga_putc(int num, FILE *stream);

	double
	fpga_huge_val(void);

	int
	fpga_feof(FILE *stream);

	int
	fpga_ferror(FILE *stream);

	int
	fpga__fileno(FILE *stream);

	int
	fpga__controlfp(unsigned int num1,unsigned int num2);

	void
	fpga__ftime(struct _timeb* t);

	int
	fpga_remove( const char *path );

	int
	fpga_strncmp( const char *string1, const char *string2, size_t count );

	void
	fpga_rewind( FILE *stream );

	int
	fpga_ungetc( int c, FILE *stream );

	int
	fpga_sscanf( const char *buffer, const char *format, ... );

	int
	fpga_toupper( int c );

	int
	fpga_tolower( int c );

	void
	fpga_perror( const char *string );

	int
	fpga_access( const char *path, int mode );

	char
	*fpga_strrchr( const char *string, int c );

	char
	*fpga_getenv( const char *varname );

	char
	*fpga_strchr( const char *string, int c );

	int
	fpga_rename( const char *oldname, const char *newname );

	size_t
	fpga_strspn( const char *string, const char *strcharset );

	int
	fpga_getch( void );

	int
	fpga_kbhit( void );

	int
	fpga_fgetc( FILE *stream );

	int
	fpga_system( const char *command );

	long
	fpga_atol( const char *string );

	int
	fpga_read( int handle, void *buffer, unsigned int count );

	char
	*fpga_fgets( char *string, int n, FILE *stream );

	int
	fpga_write( int handle, const void *buffer, unsigned int count );

	long
	fpga_lseek( int handle, long offset, int origin );

	int
	fpga_zputc( int c, FILE *stream );

	int
	fpga_putchar( int c );

	int
	fpga_isalnum( int c );

	int
	fpga_isspace( int c );

	int
	fpga_isdigit( int c );

	int
	fpga_isalpha( int c );

	int
	fpga_islower( int c );

	int
	fpga_isupper( int c );

	void
	fpga_errno( int no );

	void 
	fpga_sleep( unsigned long sleeptime );

	int 
	fpga_signal( int sig, void *func );


Problem Compiler Errors

	Compiler Error
	Calling Function

	PGP and LAME



	_filbuf
	Getc( FILE *stream );



	_flsbuf
	Putc( int c, FILE *stream );

putchar( int c );



	_&iob
	*stdout( void );

*stderr( void );

*stdin( void );



	PGP Only



	isctype, pctype, mb_cur_max
	Isalnum( int c );

isspace( int c );

isdigit( int c );

isalpha( int c );

islower( int c );

isupper( int c );



	LAME Only



	_ftol
	(Could not be identified)

Floating to long conversions



	_fltused
	(Could not be identified)

Checks whether floating point operations are loaded or not



	_chkstk
	(Could not be identified)

Check the stack for available space upon entry to and before the start of a parallel region. Useful when many private variables are declared.


PGP Command Line Arguments

To generate a new key pgp –kg. 

If this operation is completed successfully a key pair pubring.pgp and secring.pgp will be created in the root directory.

To encrypt a file: pgp –e [input filename] <username> -o [output filename]

To decrypt a file: pgp [encrypted filename]
LAME Command Line Arguments

To encode a file: lame [options] [input filename] [output filename]
To decode a file: lame –decode [decrypted filename]
For all supported options see [3].

APPENDIX B: Profiling graphs
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Decryption
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Lame Results

Variable Bit Rates
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Constant Bit Rates
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Average Bit Rates
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Decoding
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APPENDIX C: Custom Hardware

Single Supply Dual 16-bit Audio DAC, AD1866 Data Sheet, Analog Devices, Rev. 0.

MAXIM Regulated 5V Charge-Pump DC-DC Converter Data Sheet (MAX619), MAXIM, Rev 2, 5/96

APPENDIX D: Deep-3 Management

Introduction

This Appendix aims to clarify the methods and strategies that the Deep-3 project group has undergone to arrive at this conclusive stage of the project. The planning section of this document aims to clarify the plan in short and how this method of planning serves reaching the final objectives. Next, the Risks section will outline what the group perceived as being problems that they may encounter and how to resolve them accordingly. Finally, Responsibilities section will detail each member’s role within the plan and the project.

Planning
The project plan for the current period between 28/01/2002 and 21/03/2002 spans into two stages as follows:

First Stage
Consists of the Background, Software only prototype, Profiling, ASIP prototype and documentation. This stage is oriented towards developing a foundation for the second stage, which is more implementation oriented.

· Background – preparations into the D3 (High level Design stage) where essential tasks for completion were identified, resources allocated and millstones identified.

· Software only prototype – This phase aims to produce a fully functional integrated software only version of LAME and PGP.

· Profiling – Aims to measure the software modules to identify candidate functions for partitioning.

· ASIP prototype – Consists of three parts, first of which, aims to simulate programs using a MIPS simulator. The second stage is designing and developing a working processor model of MIPS. Finally, static analysis of MIPS assembly representative which identifies properties of instruction and registers.

· Documentation – This phase aims to document all the work that the First stage has accomplished.

Second Stage
The second stage consists of Fixed-point migration, ASIP prototype, partitioning prototype and the High-Level Design documentation.

· Fixed-point migration - Fixed-point implementation involves some background research into its implementation methods, writing an interface which will be used to replace floating point variables and operations in the applications (the software only version developed in the First Stage) source code.

· ASIP prototype – This is a continuation of the previous ASIP prototype in the First Stage, which involves the more advanced issues of how the Deep-3 implementation will communicate with the Re-configurable hardware. It also involves finalising the processor model to accommodate all the possible instruction that the application generates in addition to testing for correctness.

· Partitioning prototype – Involves calls graph analysis, candidate functions partitioning and design of the communication protocol between components of the software.

· Documentation – Second Stage documentation requires full formalisation of the two stages and the outcome is the D3 High-Level Design document.

Risks Management
Each subsection details the risk, its solution and explains the reasons of its occurrence.

Task timing and allocated effort

At the start it was assumed that a 16 man-hours per week would a sufficient measure for a productive project. However, due to some ambiguity in tasks, more research was held in order to deliver satisfactory completion of tasks. For instance, during the application integration stage, it was envisaged that system call removals would only take 10 hours in total, where the actual time that this task took was 5 days irrespective of how much members spent to achieve it to completion. One of the reasons for this was that there were around 4,000 system calls to remove, and some testing was carried out to ensure that modifications did not destroy the applications’ functionality.

To remedy such situations, the group ensured that such tasks should be carried over early in the project, to avoid complications towards the end deadline. Another alternative for such problems is allocating more members to the problem. In following this approach, it would be true that shifting attention to a part of a project may result in other parts being late. However, we intend to apply this approach only when some critical task needs completion, then compensate for those left out tasks in the same manner depending on their criticality. In all cases, the group reviews the plan before attempting any allocations.

Mostly such situations occur when it involves source code modifications and integration.

Underestimation and overestimation of task complexity

Considered one of the major risks the group faces. Some tasks were overlooked in terms of complexity such as the ASIP development as a whole and others were not given as much attention such as the design of the Partitioning route. Due to the dedication some members shown the ASIP route seems ahead of schedule in terms of completion and perception, while the partitioning route has some progress.

The group resolved such situations by allocating some time from the Easter break to bring the partitioning route up to date or possibly ahead. Fortunately, the research into partitioning and the communication strategies has proved handy and the group believes that the problem is easily curable via the allocation of more effort and resources to the task during the time allocated in the Easter break. As for the ASIP route, the group intends to keep the responsible members working on it.

This misunderstanding occurred due to the fact that the group perceived partitioning much easier conceptually than the ASIP route.

Roles and Responsibilities
(Note that this section requires alterations, as it is a rough guide of members’ contribution)

The following section will explain the roles and responsibilities of each member of the DEEP-3 project:

Hakim Hazara: Team Leader

Hakim has been responsible for team management, resource allocation, ensuring the team’s requirements are satisfied by the department, static call graph drawing and most importantly the planning.

Trevor Lewis: ASIP development and Team Secretary

Trevor has been responsible for all the issues involving ASIP design, custom hardware design, fixed-point class design and implementation, LAME profiling, static call graph parsing program and drawing, secretarial responsibilities.

Stuart Kingston: ASIP development

Stuart has also been responsible for all the issues involving ASIP design. Mainly, writing the MIPS processor model in Handel-C. Compiling PGP and LAME under the Cygwin environment. Stuart has also been involved in the LAME profiling stage, static call graph drawing.

William Murray: Integration

William has been responsible for application integration and system call removals, PGP profiling, compiling under Cygwin environment, profiling and the integration documentation, PGP and the integrated application testing. Static call graph drawing. In addition, William has been coordinating with Christopher for partitioning.

Quang Ngo: Testing

Quang has been mainly responsible for application testing, static call graph drawing and the testing documentation.

Sami Askar: Integration

Sami has been responsible for the application integration and system call removals, integration documentation, High level design documentation integration, LAME and the integrated application testing, static call graph drawing, LAME profiling, fixed-point library testing and migration and compiling under Cygwin environment.

Christopher Shallcross: Handel-C and Partitioning

Christopher has been mainly responsible for Handel-C learning and writing experimental programs which aid in the Handel-C migration later on in the project. Christopher has also been working on the partitioning route, LAME profiling, static call graph drawing and the Partitioning.
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